Thèse soutenue le 14 octobre 2016 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Chimie organique
Résumé : En une heure, la Terre reçoit en énergie solaire l’équivalent d’une année de consommation énergétique mondiale. Pour cette raison, les cellules photovoltaïques qui convertissent des photons en électricité, ont un rôle déterminant à jouer dans la transition énergétique imposée par les changements climatiques. Les cellules solaires sensibilisées par des colorants sont une des technologies émergentes qui ont déjà été utilisées à l’échelle industrielle à travers quelques exemples d’intégration aux bâtiments. Elles représentent une alternative esthétique et peu cher comparée aux cellules à silicium. Ces cellules hybrides dites de « Grätzel » utilisent un semi-conducteur inorganique nanostructuré sur lequel est greffé un colorant qui à l’état photo-excité va injecter des électrons dans l’oxyde. Ce sensibilisateur va être régénéré par un couple redox présent dans un électrolyte ou un transporteur de trous moléculaire qui eux-mêmes vont être régénérés à la contre-électrode. Dans ce contexte, ce travail présente les études réalisées sur certains constituants de la cellule (du semi-conducteur jusqu’au système régénérateur du colorant). La majeure partie de cette thèse concerne la synthèse et la caractérisation avancée de nouveaux semi-conducteurs organiques, des colorants ou des transporteurs de trous moléculaires, et l’étude des relations structure/propriétés. En particulier, le remplacement, la substitution ou la rigidification de groupements présents dans ces structures ont été réalisés et leur influence sur les propriétés des nouvelles molécules a été étudiée. Les colorants synthétisés présentent des maxima de la bande d’absorption à plus faible énergie allant de 440 nm à 610 nm. Les niveaux d’énergie de ces nouveaux matériaux organiques ont été déterminés par voltammétrie cyclique et également calculés et localisés par la chimie quantique. Certains composés ont été étudiés par diffraction des rayons X, par analyse thermogravimétrique ou par calorimétrie différentielle à balayage. Après une complète caractérisation, ces matériaux ont été intégrés dans des dispositifs photovoltaïques à colorants en utilisant un électrolyte liquide pour atteindre des efficacités élevées jusqu’à 9,78 % en utilisant un seul colorant et jusqu’à 10,90 % dans le cas de la co-sensibilisation du TiO
2 par deux sensibilisateurs. Certains colorants ont également conduit à des efficacités se situant à l’état de l’art à 7,81 % en remplaçant l’électrolyte liquide par un liquide ionique. De plus, certains colorants dans ces mêmes dispositifs ont présenté une excellente stabilité avec une perte comprise entre 7 et 38 % après 7000 heures d’illumination continue à 1000 W.m
-2 à 65 °C. Enfin, des premiers tests ont également été réalisés en dispositifs à l’état solide qui ont conduit à une efficacité 4,5 % avec un transporteur de trous de référence ouvrant de nouvelles perspectives d’application après optimisations. En parallèle, les nouveaux transporteurs de trous synthétisés dans ce travail se sont révélés efficaces en cellules à base de pérovskites.
Jury : Président : Pr Frédérique Loiseau
Rapporteur : Pr Jean-Christophe Lacroix
Rapporteur : Dr Johann Bouclé
Examinateur : Dr Frédéric Oswald
Examinateur : Renaud Demadrille
Directeur de thèse : Dr Jean-Pierre Travers
Co-directeur de thèse : Dr Renaud Demadrille
Mots clés : Colorants organiques, Cellules solaires, Semi-conducteur, Photovoltaïque, Hybride, Synthèse, Photopiles
Thèse en ligne.