Vous êtes ici : Accueil > Le laboratoire > Caractérisation d'électrolytes composites pour batteries tout-solide par diffusion de neutrons et rayonnement synchrotron

Agenda


Soutenance de thèse

Caractérisation d'électrolytes composites pour batteries tout-solide par diffusion de neutrons et rayonnement synchrotron

Lundi 11 décembre 2023 à 14:00
 Bâtiment Green-ER, Salle 2C006, 21 avenue des Martyrs, Grenoble
Publié le 11 décembre 2023

​Par Guillaume-Navallon​
Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP)

La technologie lithium-ion atteint ses limites pour les applications de stockage d’énergie dans la mobilité électrique. En effet, les hautes densités d’énergie ainsi que les standards de sécurité requis par le marché sont difficilement atteignables avec les matériaux utilisés actuellement. En théorie, ces limitations peuvent être dépassées en utilisant du lithium métallique comme électrode négative, ce qui augmenterait la densité d’énergie de la cellule électrochimique mais exigerait un moyen de prévenir la pousse dendritique. Dans ce contexte, les électrolytes polymères sont des matériaux prometteurs puisque leur nature solide pourrait faire obstacle à cette pousse dendritique. Cependant, leur conductivité ionique reste insuffisante en pratique. Dans certaines conditions, préparer un composite en ajoutant une petite quantité de charges dans l’électrolyte polymère permet d’améliorer sa conductivité. Des études attribuent cet effet aux interactions bénéfiques à l’interface entre les charges et le système polymère-sel de lithium. D’autres études, à une échelle plus large, mettent en évidence une modification de la mobilité des chaînes de polymère en présence de charges. Ensemble, ces résultats suggèrent que les charges créent autour d’elles des régions de conduction rapide, ce qui à l’échelle macroscopique peut améliorer la conductivité de l’électrolyte.
Dans cette thèse, nous cherchons à comprendre la contribution relative de ces effets à la conductivité globale, afin de clarifier le rôle des charges ajoutées dans un électrolyte polymère. Notre système d’étude se compose de poly(triméthylène carbonate) (PTMC) et de LiTFSI, dans lequel des particules d’alumine sont incorporées en quantité variable. Nous avons choisi trois types de particules dont la morphologie et les phases cristallines sont différentes. Pour étudier les effets des charges à plusieurs échelles, nous avons combiné des caractérisations en laboratoire et aux grands instruments. Les propriétés de transport ioniques des électrolytes ont classiquement été évaluées par des techniques électrochimiques. La microstructure des composites a été sondée par imagerie-X à contraste de phase et par diffusion de rayonnement - rayons-X et neutrons - aux petits angles. Plusieurs paramètres microstructuraux pertinents ont été identifiés, et quantifiés, puis mis en corrélation avec les propriétés de transport de l’électrolyte. Nous avons montré que la densité d’hydroxyles en surface des particules par volume d’électrolyte, est multipliée par deux selon le type de charge utilisé, et que ce paramètre est lié à l’état d’agglomération des particules et à l’homogénéité de leur dispersion. Cette étude structurale est accompagnée d’une étude de la dynamique du PTMC à l’échelle moléculaire par diffusion quasi-élastique de neutrons (QENS). Nous avons montré que la mobilité intrinsèque du PTMC est entravée par la présence de sel de lithium, tandis qu’en présence d’alumine les chaînes polymères retrouvent une mobilité locale. A l’échelle temporelle caractéristique de plusieurs centaines de picosecondes, le temps de relaxation de la dynamique est divisé par deux en présence de charges.
L’ensemble des caractérisations menées nous permet de discuter l’effet de charges inertes sur les propriétés de transport ionique d’un électrolyte à base de PTMC. Dans un électrolyte composite, la présence de charges induit plusieurs effets qui se combinent et dont la résultante complexe dépend de plusieurs facteurs. Nous avons démontré que l’ampleur des interactions à l’interface entre particules et polymère tout comme les variations de mobilité locale du polymère sont en corrélation avec les changements des propriétés de transport de l’électrolyte. La compréhension de ces mécanismes constitue une étape importante dans le but d’optimiser la formulation de composite pour produire des électrolytes plus performants.