You are here : Home > CREAB Team > Development of universal biosensors for the detection of pathogenic bacteria

Éric Pardoux

Development of universal biosensors for the detection of pathogenic bacteria

Published on 25 October 2019
Thesis presented October 25, 2019

Abstract:
Microbiological analysis to confirm the absence of bacteria in normally sterile biological samples, such as blood, is routine in many laboratories. The presence of bacteria in blood, called bacteremia, can have very serious, and even fatal consequences for the patient. So far, the standard protocol for their detection has been based on the enrichment of blood samples collected from patients, thanks to blood culture, in order to obtain a sufficient population for analysis. These procedures are time consuming which sometimes lead to delays in diagnosis and subsequent adaptation of antibiotic treatments by several days. In recent decades, techniques such as mass spectrometry identification or molecular analyses have reduced the time required to identify the pathogens involved. In this context, the use of biosensors is another promising alternative.
This work proposes to include wide spectrum probes in an optical sensor using SPR imaging (surface plasmon resonance). This system is already developed for the specific recognition of pathogens during their growth in the blood. The new ligands we propose to evaluate are antimicrobial peptides (AMP). These short, cationic and amphiphilic peptides have the advantage of having a broad spectrum of interaction with bacteria, coupled with high stability (chemical, thermal and drying), especially compared to the antibodies used so far in this technique. Their immobilization on SPRI prisms allows the simultaneous evaluation of the affinity of several AMP to the same bacterial strain. The biosensors based on AMP were able to detect pathogenic strains of Escherichia coli and Staphylococcus aureus in simple culture medium, such as plasma and diluted blood in blood culture medium.
The system obtained allows the detection of pathogens present at an initial concentration of about 1 CFU.ml-1, in less than 24 hours and in all assayed media. Finally, the implementation of multidimensional statistical analyses has resulted in a consistent classification of targeted species, in simple culture medium, such as blood. These results show the potential of this system to develop a wide-spectrum biosensor capable of both detecting and cross-referencing bacterial pathogens.

Keywords:
antimicrobial peptides (AMP), surface plasmon resonance imaging (SPRI), pathogen detection, bacteremia, blood, E. coli, S. aureus.

On-line thesis.