Vous êtes ici : Accueil > Équipe STEP > Co-localisation AFM/Raman : caractérisation de systèmes polymères multiphasés

Joao Paulo Cosas Fernandes

Co-localisation AFM/Raman : caractérisation de systèmes polymères multiphasés

Publié le 16 novembre 2017
Thèse soutenue le 16 novembre 2017 pour obtenir le grade de docteur de la Communauté Université Grenoble Alpes - Spécialité : Matériaux, Mécanique, Génie Civil, Électrochimie

Résumé :
L’étude avancée de systèmes polymères complexes (mélanges compatibilisés, nanocomposites, copolymères à bloc, etc) est cruciale pour le développement de nouvelles solutions d'ingénierie. Afin d'élucider les relations mise en œuvre-structure-propriétés de ces systèmes, la co-localisation d’informations chimique, physique et morphologique devient essentielle pour obtenir des réponses fiables. La caractérisation de la surface et de l’intérieur des matériaux est également d'une importance primordiale, en particulier pour les matériaux polymères minces (<100 μm) tels que les membranes, qui peuvent présenter des profils de propriétés contrastés entre les surfaces et le cœur. Ces profils de propriétés peuvent être induits par le procédé de mise en œuvre, la chimie du matériau ou son vieillissement. Pour cela, le matériau doit être correctement ouvert sans modification structurelle, chimique ou morphologique. Par conséquent, l'objectif principal de cette thèse a été de développer une méthodologie expérimentale de caractérisation alliant la co-localisation des informations morphologiques, nanomécaniques et chimiques obtenues par le couplage de la Microscopie de Force Atomique (AFM) et la Microspectroscopie Confocale Raman et d’une technique de préparation des coupes transversales par cryo-ultramicrotomie.
La stratégie développée a été appliquée à trois systèmes polymères différents : 1) des mélanges polyamide 6 (PA6) / acrylonitrile-butadiène-styrène (ABS), compatibilisés avec un styrène-acrylonitrile greffé anhydride maléique (SAN-MA) ; 2) de membranes hybrides constituées d’une matrice polymère de type polyétheréthercétone sulfoné (sPEEK) et d’une phase inorganique chimiquement active préparée par chimie Sol-Gel (SG) ; 3) des copolymères à bloc de type PS-PEO-PS utilisés comme électrolytes pour les batteries lithium. L’étude morphologique du mélange PA/ABS a montré que l'addition d’un copolymère SAN-MA améliore significativement la dispersion de la phase ABS dans la matrice PA et, en fonction du protocole appliqué, modifie la morphologie du mélange et la structure cristalline de la phase PA (teneur/distribution des phases α-γ). Les modifications morphologiques observées ont ensuite été corrélées aux propriétés rhéologiques des mélanges. L’étude des membranes hybrides sPEEK/SG avait pour objectif de comprendre l’impact des étapes clés d’élaboration de ces membranes sur la morphologie des mélanges, la distribution de la phase SG dans la matrice sPEEK et sa densité de réticulation et le précurseur utilisé : (3-mercaptopropyl)-methyldimethoxysilane (SHDi) et (3-mercaptopropyl)-triméthoxysilane (SHTriM). L'efficacité des traitements thermiques appliqués aux différentes étapes du processus de fabrication des membranes SHDi a été démontrée. Pour les membranes basées sur le précurseur SHTriM, il a été démontré que la phase SG présente un système hiérarchiquement organisé, avec des domaines sphériques composés de particules élémentaires plus petites. L’inclusion d'une phase SG à l'intérieur de la membrane sPEEK ne perturbe pas la nanoséparation hydrophobe/hydrophile de la matrice, mais limite son gonflement.
Enfin, une analyse morphologique a été réalisée sur une série de copolymères à bloc utilisés comme électrolytes polymères dans les batteries lithium. Le contraste nanomécanique des différentes phases a permis de mesurer les distances inter-domaine entre les phases PS et PEO par AFM et une bonne corrélation a été obtenue avec des résultats de diffusion de rayons X aux petits angles (SAXS). Il a été démontré que les propriétés nanomécaniques de surface du matériau évoluent avec son hydratation (humidité relative de la pièce).
Dans chacune des trois études présentées dans cette thèse, la stratégie de co-localisation a fourni des informations précieuses inaccessibles autrement. Cela ne fut possible qu'après une mise en œuvre spécifique de la cryo-ultramicrotomie pour la coupe de membranes fines et d’échantillons sensibles à l'eau.

Jury :
Président : Dr Didier R. Long
Rapporteur : Pr Isabelle Royaud
Rapporteur : Pr Odile Fichet
Membre : Dr Deborah Jones
Membre : Delphine Tavernier-Lohr
Directeur de thèse : Laurent Gonon
Co-directeur de thèse : Vincent Mareau

Mots clés :
Cryo-Ultramicrotomie, Caractérisation, Microscopie Electronique

Thèse en ligne.